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Abstract
Based on an existing algorithm for reversible quantum arithmetic com-

pression of a quantum Bernoulli source, a generalized compression procedure
is proposed for quantum sources of any dimension. This hand compilation of
classical arithmetic compression can compress quantum source distributions
more complex than their classical counterparts. By this procedure the com-
pression rate approaches the entropy of the quantum source asymptotically
while the expected fidelity approaches 1 asymptotically as well.

Introduction
Quantum compression has been regarded as a largely theoretical (rather than prac-
tical) process. However, it could play an important role in quantum information
processing, just as the classical compression does. Therefore it is important to find
algorithms for practical quantum compression; and this is challenging, because
most classical compression algorithms do not adapt well to the quantum case.
Asymptotically, the counterpart of classical Shannon compression is Schumacher’s
quantum compression[4, 2], which has proven that the theoretical lower bound
of any viable compression scheme is the Von Neumann entropy of the quantum
source’s density operator, regardless of the dimensions of the qudits. We give a
practical procedure to compress general quantum strings.

Methodology

Classical Arithmetic Coding

The goal of classical block compression is to construct a function that maps the
original random variable with some known distribution to a new random variable
with uniform distribution. The new variable is incompressible and forms the
compressed version of the original information. Arithmetic coding, motivated
by Shannon-Fano-Elias coding, can compress any sequence of I.I.D. elements at a
rate slightly higher than the asymptotic limit of the Shannon entropy. Classical
arithmetic coding maps a sequence to a subinterval of [0, 1), and the midpoint of
the interval represents the codeword.

Figure 1: The decoding of 0.538 (the circular point) in the example model. The
interval is divided into subregions of length proportional to the symbol frequencies,
then successively subdivided in the same way[5]

Scheme of the Quantum Encoder "E"

This circuit encodes the sequence |χ〉 from the quantum source to a compressed
string |Cmid〉, represented as a fixed-point register. This circuit uses submodules
“e” and “d” described below. The decoding block “D” is the inverse of this circuit.
These blocks play the same role as the circuits in [1].
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Figure 2: Quantum circuit to remove entanglement between the codeword and input
sequence. Modules described below.

The "e" Module

The input sequence is |χ〉 = |X1〉 ⊗ · · · |Xn〉 where X1, . . . , Xn are I.I.D. random
variables. Instead of iterating the upper and lower bounds of the interval that
represents the sequence χ, we use the midpoint and length of the interval. This
changes the iteration from the classical case by a straightforward calculation.

The length represents the probability of the sequence. It can also absorb typical
measurement block described below.
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Figure 3: Quantum circuit for the “e” module. Mi encodes the symbol Xi and iterates
the values of Cmid and Prob.

Strong Typical Measurement
A major difference between classical and quantum compression is that a fixed
classical compression procedure cannot compress every sequence—in particular,
the atypical ones—but the probability of atypical sequences is small. Hence on
average the compression can be achieved. However, a quantum sequence could be
a superposition of all basis vectors, including typical and atypical sequences. We
have to compress the sequences in the typical subspace and discard the atypical
part. This circuit block can be absorbed into the "e" module.
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Figure 4: Quantum circuit to measure strong typicality and reset |Prob〉 to |1〉.

The "d" Module
We must remove any entanglement between the midpoint variable and the input
sequence after “e” module. Borrowing an idea from [3], we transform the classical
decoding procedure to a quantum version. This lets us do the entanglement
removal.
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Figure 5: Quantum circuit for the “d” module. Ni extracts the ith symbol from Cmid,
while Ki iterates the value of Cmid itself during the decoding procedure. The final value
of Cmid may not be exactly 1/2 because of finite precision arithmetic

Then we already have all the elements [1] to truncate the midpoint variable.
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